X-ray spectroscopy reveals high symmetry and electronic shell structure of transition-metal-doped silicon clusters
نویسندگان
چکیده
Size-selected cationic transition-metal-doped silicon clusters have been studied with x-ray absorption spectroscopy at the transition-metal L2,3 edges to investigate the local electronic structure of the dopant atoms. For VSi16 + , the x-ray absorption spectrum is dominated by sharp transitions which directly reveal the formation of a highly symmetric silicon cage around the vanadium atom. In spite of their different number of valence electrons, a nearly identical local electronic structure is found for the dopant atoms in TiSi16 + , VSi16 + , and CrSi16 + . This indicates strongly interlinked electronic and geometric properties: while the transition-metal atom imposes a geometric rearrangement on the silicon cluster, the interaction with the highly symmetric silicon cage determines the local electronic structure of the transition-metal dopant.
منابع مشابه
Structural Identification of Doped Silicon Clusters
In this chapter we review recent research on the structural identification of isolated doped silicon clusters by combining state-of-the-art experiments and computational modelling using the density functional theory formalism. The experimental techniques include chemical probe mass spectrometric methods, infrared action spectroscopy, photoelectron spectroscopy, and x-ray absorption spectroscopy...
متن کاملFast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate
Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملResonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings
The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic s...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کامل